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This work presents a study about behavior of the response of Element Free Galerkin method due to Interpolating Moving Least 
Square using 2D linear, quadratic and cubic polynomial bases. For this purpose, the 2D electromagnetic scattering problem generated 
by an infinite dielectric cylinder illuminated by a TMz plane wave is used. A parametric analysis, comparing numerical with analytical 
results, is carried out in order to identify the best range of value parameters for each base. 
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I. INTRODUCTION 
EVERAL electromagnetic problems are modelled by 
partial differential equations (PDE), which, in many cases, 

require a numerical solution. The most popular numerical 
method for solution of PDE is the Finite Element Method 
(FEM). However, a frequent problem is the difficult and time-
consuming to find an appropriate mesh generation to represent 
complex geometries with many deformations, discontinuities 
and/or moving boundaries. An alternative way to solve this 
type of problem is to use a Meshless Method (MM) [1]. A MM 
doesn’t use a mesh structure and approach the solution using 
nodes spread throughout the region of interest. 

One of the most known and used MM is the Element Free 
Galerkin (EFG) [2]. Recent works about EFG uses the 
Interpolating Moving Least Square Method (IMLS) to obtain 
shape functions that satisfy the Kronecker Delta property [3]-
[5]. In the study of electromagnetic scattering, for example, 
EFG-IMLS allows to impose Absorbing Boundary Condition 
(ABC) directly into the discrete system. Although an 
investigation of EFG-IMLS with parametric analysis to a 
linear base has already been done [6], an EFG-IMLS study 
using other kind of bases has not been carried out yet. 

The present work shows numerical results obtained by 
EFG-IMLS for a 2D electromagnetic scattering analysis with 
quadratic and cubic polynomial bases. A comparative study 
with results from linear polynomial basis is presented. 

II. PROBLEM FORMULATION 
The problem on study, illustrated in Fig. 1, consist of 

scattering analysis of a TMz plane wave by infinite dielectric 
cylinder, where Ω1 is the cylinder domain and Ω2 is the free 
space domain, εr is the relative electric permittivity of 
cylinder, ΓABC represents the global boundary where ABC 
should be imposed, and Ei is the incident electric field. The 2D 
study domain is Ω = Ω1UΩ2.The weak form of the problem, 
using a first order Bayliss-Turkel ABC, is [6]: 
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where r is the relative permeability, E the total electric field,  
k0 the wave number, w the weight function (chosen considering 

 
Fig. 1. The problem domain. 

the Galerkin method), r b 0μ ((1 )[1 )2R ]jk    and 

r( μ )1 ( )i iq E E    n, where n is an unit vector. 
In the MM approach, each node, I, is a point xI = (x, y) Ω

for which a shape function, I, is associated. A local trial 
approximation is valid for unknown function E [6]: 
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where m represents the number of monomial terms in the 
polynomial base pT(x) and a(x) are the unknown polynomial 
coefficients. pT(x) = [1 x y] for a 2D linear basis, pT(x) = [1 x y 
x² xy y²] for a 2D quadratic basis and pT(x) = [1 x y x² xy y² x³ 
x²y xy² y³] for a 2D cubic basis. 

In IMLS approximation presented in this work, coefficients 
a(x) are determined by minimizing a weighted discrete L2 
norm, for which weight function is: 

W(r) 1 / (r ),n n   (3) 
where β is a constant with a very small value to ensure no 
singularity, n is a constant adjusted to improve the accuracy 
and r = 2 2

I I[(x x ) / ] [( ) / ]y y     is the support radius of 
circular influence domain of each node.  

III. NUMERICAL RESULTS 
To evaluate the influence of polynomial basis in the EFG-

IMLS numerical results for 2D linear, quadratic and cubic 
bases, the following constants were considered: vacuum 
wavelength λ0 = 3m, Rc = 0.25λ0, Rb = 0.5λ0, μr = μ0 and εr  =  
2 – j (lossy dieletric simulated by complex permittivity). The 
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EFG-IMLS accuracy was compared to Analytical Solution 
(AS) by the following L² norm error: 

2 2
² .EFG IMLS AS ASEL E E d E d

 

      (4) 

All analyzes presented in this work consider four 
integration points per rectangular cell. The first analysis is the 
variation of Number of Node (NN), whose response is shown 
in Fig. 2. The parameters used for EFG-IMLS are 6652 Gauss 
Integration Points (GIP), β = 0.1, n = 8 and α = 3. As can be 
observed, the EL2error decreases as NN increases for all bases 
until a certain value from which there is no significant 
variation of EL2. This happens for 762 nodes for linear (EL2= 
3.5%) and cubic bases (EL2= 3.1%) and 1601 nodes for 
quadratic basis (EL2= 6.0%). Using these values of NN and 
the same n, β, α from previous simulation, a GIP variation 
analysis is shown in Fig. 3. One sees that the bases analyzed 
have the same behavior, with EL2 decrease until approximately 
GIP = 8000, when the error stabilizes. The minimum EL2 
errors obtained are with 2836 GIP for linear base (EL2= 
3.01%), 7876 for quadratic base (EL2= 5.19%) and 2836 for 
cubic base (EL2= 2.24%). These GIP values are used to verify 
the EL2 error with n, β, α variation. Fig. 4 shows that the bases 
present different n value ranges for which the EL2 error is 
small. Linear basis has a range of n = 8 to 23, quadratic basis 
exhibit a range of n = 8 to 12 and cubic basis, n = 5 to 9. For 
the β used in simulation, as seen in Fig. 5, linear basis 
maintain small EL2 error for all values, quadratic base for β = 
0.04 to 0.2, and cubic base for β greater than 0.07. For the α 
variation, shown in Fig. 6, linear basis have similar EL2 error 
for all values. Quadratic basis presents small EL2 errors for α 
greater than 1.3 and cubic base for α greater than 2.1. 

The results presented in this work suggest the quadratic 
basis doesn’t reach the same precision level of linear and cubic 
bases. In general, linear basis have a wider range of good 
values for n, β, α parameters to choice than others bases. This 
characteristic makes linear base more flexible to obtain 
accurate results in a numerical analysis. However, for a 
parametric optimization with the objective to minimize EL² 
error, the cubic basis could be more appropriate due to its 
narrower range of parametric values. A study to show the 
impact of this characteristic and compare the performance of 
optimal parameters obtained by an optimization algorithm for 
linear and cubic bases does not exist yet. 

 
Fig. 2. Norm L² error for variation of number of nodes. 

 
Fig. 3. Norm L² error for variation of GIP. 

 
Fig. 4. Norm L² error for variation of n. 

 
Fig. 5. Norm L² error for variation of β. 

 
Fig. 6. Norm L² error for variation of α. 
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